Technische Universitat Minchen
Fakultat fur Informatik

Diplomarbeit:

Numerical quadrature on sparse grids

Stefan Dirnstorfer

Contents

1 Introduction

2 Univariate quadrature

2.1 Gaussian and Gauss-Patterson Formulas

2.2 Hierarchical quadrature . .

2.2.1 Hierarchical basis functions
2.2.2 Polynomial Basis functions

3 Multivariate quadrature

3.1 Monte Carlo and quasi-Monte Carlo

3.2 Fullgrid...........
3.3 Smolyak’s Construction . .
3.4 Tensor product basis

4 Basis functions
4.1 Gauss formulas
4.2 Piecewise Gauss polynomials

4.3 Polynomial degree of exactness

4.4 Integration error

4.5 Non adaptive numerical example

5 Adaptivity
5.1 Construction
5.2 A good example
5.3 A bad example
5.4 Balanced adaptivity
5.5 A two dimensional example
5.6 Numerical results
5.7 Adaptive balance

6 Efficient data structure
6.1 Integer vector
6.2 The bit string
6.3 Speed improvements

7 Numerical Results
7.1 Test Function
7.2 Absorption Problem
7.3 CMO Problem
7.4 Asianoption
7.5 Run times and complexities

8 Conclusion

Bibliography

12
12
14
15
16
17

19
19
20
22
23
25
27
29

31
31
32
33

35
35
37
40
43
46

48

49

1 Introduction

Multivariate integrals in up to several hundred dimensions often arise in sta-
tistical or physical computations. Many conventional quadrature algorithms
suffer from the “curse of dimension”, i.e. have computational costs growing
exponentially with the dimension. Others have computing costs independent
from the dimension but their accuracy is often low. Sparse grids are known
to have a complexity independent of the number of dimensions up to a loga-
rithmic factor. Different sparse grid implementations are based on integration
rules suitable for certain function classes. Many integration rules lead to grids
with only little room for adaptivity. The performance of such grids has been
compared for a variety of integrands [4]. A sparse grid based algorithm which
fully exploits adaptivity has been presented by Hans Bungartz [2]. Although
this algorithm can adapt to a wide range of function classes, it exploits only
little a priori knowledge about smooth integrands. This makes it inferior to non
adaptive rules tuned for the class of smooth functions.

The scope of this publication is to provide some tuning to the adaptive inte-
gration rule introduced in [2]. Special emphasis was put on smooth functions,
as this is the main disadvantage of this adaptive algorithm, compared to non
adaptive sparse grids. The quadrature rule was improved such that polynomi-
als with a higher degree can be integrated with the same amount of function
evaluations. Then the adaptive strategy had to be adjusted in order to ex-
ploit the higher polynomial order of exactness in adaptive grids. Moreover, a
new data structure was established, which considerably reduces computation
time and storage requirements. Finally the performance of the new quadrature
algorithm is compared to other quadrature rules in various examples.

2 Univariate quadrature

A sparse grid construction transforms a one-dimensional quadrature rule into a
multivariate rule. The resulting quadrature formula generally keeps the prop-
erties of the underlying rule. It integrates the class of multivariate functions
with a comparable performance as it does for the equivalent univariate class
and provides similar options for adaptive refinement. It is therefore important
to have a look at different quadrature rules.

Every quadrature formula @) evaluating the function f at the positions z1, .., z,
estimates the integral on a domain [a..b] and can be written in the following
way:

[1) e Qs = 3w s, @
@ k=1

Whereas the wy are called weights and the z; nodes. A quadrature rule can be
fully determined by the number of nodes n, the abscissas x; and the weights
wg. The most important performance measure of these quadrature rules is the
number of function evaluations that are necessary to approximate the integral
up to a certain accuracy. This translates into computational costs, since evalu-
ating the function is often one of the most time consuming tasks and exact run
times heavily depend on implementation details.

2.1 Gaussian and Gauss-Patterson Formulas

With the Gauss rule it is possible to achieve the maximum possible polynomial
degree of exactness. With n function evaluations polynomials of degree < 2n—1
can be integrated exactly [3].

Theorem: Let x1,..,2, be the zeros of the n-th Legendre polynomial. Then
there exist weights wy, such that

[p@) dr =3 wi pla) @)

-1 k=1
for all polynomials p(z) with degree < 2n — 1.

There are slight variations of this Gauss rule optimized for function classes
different than polynomials. However Gauss based rules are generally assumed
to be the optimal rule with points generated by a priori knowledge only. It is
possible to adjust the Gauss rule towards more flexibility with a slight loss of
accuracy.

The nodes resulting from the Gauss quadrature rule are generally not nested,
meaning that a formula with a higher number of nodes does not necessarily

2 Univariate quadrature

contain all the nodes of rules with lower numbers. A nested rule has two
advantages. First, a more accurate rule can be applied and reuse all previous
function evaluations, such that the number of points is increased until the error
is within a given tolerance. And second, it will be shown that sparse grids based
on nested quadrature rules are much more efficient.

The Gauss-Patterson rule can be built with 2n + 1 points containing all the
points of an n point rule. The polynomial order of exactness with 2n + 1 points
is 2n +m+ 2. Where m is n, if n is odd, and n — 1, if n is even.

Further details about the Gauss-Patterson rule can be found in [4]. It is intro-
duced here for the purpose of completeness and will be used for a comparison
of two different sparse grid approaches.

2.2 Hierarchical quadrature

The first kind of hierarchical quadrature was established by Archimedes. He
integrated the parabola 1 — z2 by continuously adding triangles to the area.
Figure 2.1 shows three triangles approximating a parabola.

1~

0 I I I
-1 0.5 0 0.5 1

Figure 2.1: Archimedian integration

The biggest triangle has an area of 1. The two smaller triangles have an area
of %. Adding these three and all the further triangles Archimedes derived the

parabola’s area:
1 4

1
The biggest advantage of this rule is that additional triangles can be added
adaptively. There is no need to know their number and position before the first
point is evaluated. The size of the added triangles indicates how far the area of
all the triangles differs from the exact integral. Although this rule is still quite

primitive it is a good basis for a fully adaptive quadrature algorithm.

2.2.1 Hierarchical basis functions

On the basis of the Archimedian quadrature rule, more sophisticated rules can
be established. First, a formal mathematical representation of the existing rule
is explained.

The mother of all triangles is the one dimensional hat function ®(z) on the
domain [—1,1]. It can be written as:

) 1—z| forze[-1,1]
®(z) := { 0 otherwise (2.4)

2 Univariate quadrature

Smaller functions can be defined by a level [and an index i, resulting in a
number of translated and dilated hats.

Bri(w) =3 (2 (@+1) -2 +1) with1 <4< 2! (2.5)

The supports of all functions on a single level are mutually exclusive and par-
tition the domain [—1,1]. On the support of a function on a level /, there live
two functions on level [+ 1. These two smaller functions will be called left and
right son, whereas the original function on level [will be called the father.
Figure 2.2 shows the functions of level one to four

/\
/\/\
/V\/\/\
P VN NN VNN

Figure 2.2: Hierarchical basis functions

Using functions up to a level L, a basis of piecewise linear functions with support
on [—1,1] and 2 — 1 equidistant nodes can be built. The following formula
shows a function approximation with hat functions.

L 2l-1
fl@) = Y i ®(x) (2.6)
=1 i=1
The coefficients c;; are called the hierarchical surpluses. They are the dif-
ference between the function f(z) and the interpolation on the previous level.
In the case of the Archimedian parabola these are ¢; = (!/4)'~1. This ap-
proximation can be easily integrated, by integrating the one-dimensional hat
functions.

1 1 L gl=-1 L 2i-1 1
/ f(z)dz ~ / DD i) de =) a / Pui(z)dr (2.7)
-1 “1i=1i=1 =1 i=1 -1

Nodal basis representation

In order to express the hierarchical quadrature formula with the general quadra-
ture formula (2.1) the basis functions can be transformed into a nodal basis.
For a given level [the nodal basis spans the same function space. The functions
®,(z) look like this:

Bi(z) =@ (27N +1) —i) with1<i<2" (2.8)

The nodes z; of these functions are in the center of the basis function and the
weights w; are the volume of the basis function, i.e. w; = 2/~1. The hierarchical
quadrature based on hat functions ®(z) is equivalent to a trapezoidal rule
integrating a function that is zero on —1 and 1. Its advantage however is that
on higher levels basis functions can be inserted adaptively.

2 Univariate quadrature

2.2.2 Polynomial Basis functions

Instead of simple hat functions, a hierarchical quadrature algorithm can be
based on piecewise polynomials. A polynomal basis can be constructed such
that on level [polynomials of degree [can be integrated exactly. The supports
and nodes are the same as for the previous hat function basis. The polynomials
are constructed such that they interpolate zero on all their fathers nodes and
are normalized to be 1 at their own node. The first level starts with two linear
functions having their nodes on the domains borders. Figure 2.3 shows the
resulting piecewise polynomial basis.

—————
/\
M
ST T~ > > N
VARV VIRV VAR VAR

Figure 2.3: Polynomial basis functions

A major problem of these polynomials is that they have nodes on the borders.
Moving to a multidimensional integration rule, it will be shown that the most
simple grid would have 2 points in each direction, leading to a total of 24™
points located at the domains corners. Evaluating a very high dimensional
function at these positions can easily exceed today’s computing capabilities.

A possible solution is to start with only one constant function on level one. For
more than one dimension the minimum amount of nodes drops to 1%™. The
drawback is that on level [only polynomials of degree [— 1 can be integrated
exactly. Figure 2.4 shows the basis functions resulting from this advanced rule,
as they were used by Hans Bungartz for adaptive high dimensional integration.
In section 4 further improvements will be derived.

T

Figure 2.4: Polynomial basis functions

3 Multivariate quadrature

There are two main classes of multivariate quadrature formulas based on ran-
dom or regular grids. Random grids, also known as Monte Carlo methods,
spread their points on the functions domain according to a generated sequence
of random or quasi-random numbers. Regular grids are constructed by a well
defined algorithm, which is typically based on univariate rule. There are dif-
ferent ways to extend a univariate quadrature rule to higher dimensions. The
main goals are to keep the number of points low and to preserve the conver-
gence properties found in the first dimension. Sparse grids have been proven
to satisfy these demands and are known by different names, like combination
techniques [2] or Smolyak construction [4]. Depending on the univariate rule,
sparse grids can appear in different forms. In this section the basic construction
is introduced, but the main focus will be put on hierarchical quadrature based
grids.

3.1 Monte Carlo and quasi-Monte Carlo

The standard Monte Carlo method evaluates a function on random points,
distributed uniformly over the unit cube. With a sequence of random points
(z;), a d-dimensional integral is obtained by averaging the evaluated function
values.

[, S = 1Y s 6

The integration error is O(N -1/ 2). Tt is completely independent of the dimen-
sion and of the function’s smoothness properties. The Monte Carlo method is
the rule of choice for very high dimensional and discontinuous problems, but
has poor performance otherwise.

Random vectors with independent random coordinates tend to point clumpings
or holes, since there is a certain chance of some points to land very near to
each other. Convergence can be improved by a more uniformly distributed
sequence of quasi-random numbers, also refered as low discrepancy sequences.
Halton, Sobol’ and Faure sequences will be compared to sparse grids in the final
section [7]. Quasi-Monte Carlo methods generally have error bounds of size
O((logN)%™N~=1). Due to the low algorithmic overhead and good performance
for a wide range of functions, quasi-Monte Carlo methods are currently used
for most higher dimensional integration problems.

3 Multivariate quadrature

3.2 Full grid

The most simple way to create a multivariate quadrature rule is the full grid,
with equidistant points in every direction. For a given one dimensional quadra-
ture rule Ql(l) using n; points, a d-dimensional rule Ql(d) can be built recursively.

QY = QWeQ*Vy (3.2)

Whereas ® is the tensor product for two univariate quadrature rules Q' and Q"
is defined as follows:

Qf = gwl’i Flz1s)
Qf = iwg,i Fl@2,)
@eQ)f = @ (iwg,iﬂ-,%i))
- S Eotose). o0
= \S

The total amount of evaluated points is n;%, i.e. grows exponentially with
the dimensionality, refering to the “curse of dimension”. A quadrature rule
with only two points in one direction will in hundred dimensions already use
2100 ~ 1030 points.

3.3 Smolyak’s Construction

Smolyak constructed a multidimensional grid with fewer points [8]. A uni-
variate quadrature rule Ql(l) on level [uses n; points. Based on this rule, the

d-dimensional sparse grid Ql(d) can be built.
ng
A= (3 (@ -a%) e @) s o
=0

This construction is the basis of a wide range of sparse grid algorithms. De-
pending on the underlying rule Ql(l) there are different complexities for the error
and the number of points.

Since the function is integrated with integration rules of different levels, the
number of points per level is considerably lower if the univariate rule is nested
and evaluated points can be reused. Hierarchical rules are always nested and
complexity bounds will be given below.

Another important feature of this grid is that the polynomial degree of exactness
is preserved [4]. If Ql(l) integrates a polynomial of degree n exactly, then Ql(d)
integrates a d-dimensional polynomial }°; <, ¢ ' ---xéld exactly.

3 Multivariate quadrature

3.4 Tensor product basis

The Smolyak and the full grid construction create a higher dimensional quadra-
ture rule by combining the univariate rules with the tensor product. Applying
this tensor product construction to the hierarchical quadrature, the univariate
basis functions are transformed to a set of multi-dimensional basis functions.
A full and a sparse grid are distinguished by the subset of functions which are
used on each level.

The multi-variate hierarchical quadrature uses a tensor product basis. Each
basis function is a product of a univariate function ®;, ;, for each direction k.
A multi dimensional function ®;; can be constructed as follows:

dim

Oyi(z) = I @upire (m1)- (3.5)
k=1

Figure 3.1 shows an example product of piecewise linear functions of level one
and two.

N
AN AN
P OSOOMNNANRINN
AR A

771 1 TR
.."Ill".,".:.:.::.::,s\“
=

Figure 3.1: Tensor product basis

The Smolyak construction implies, which of these basis functions are used in a
straight-forward implementation. The sparse grid is constructed for a certain
level [. All basis functions in this grid have a sum of the univariate levels
being less or equal to [+ dim — 1. Each basis function has therefore a level,
representing the sparse grid level on which it appears first. This function level
basically sums up the levels [; of the univariate functions.

dim
level (9y;) = (Zlk) —dim + 1 (3.6)

k=1

Figure 3.2 demonstrates this fact more clearly for two-dimensional grids up
to level three. As indicated by the one-dimensional basis functions plotted
next to the coordinate axes, the grid is based on the hat functions described
previously. The supports and the nodes shown here, are the same for the
improved polynomial basis. On the first level the grid contains only the function
on the top left. On level two there are five functions. All 17 functions build a
grid of level three. An important property, which will influence the adaptive
strategy, is that the supports of the functions on a new level can be constructed
by subdividing the old supports along each direction.

10

3 Multivariate quadrature

x-level

I Ve NVAVAVAVA

y-level
AVAVAVANRVZ VA N N
+ |+
+ |+
+ |+

+|+|+|+

Figure 3.2: Sparse grid construction

Error bounds

For this hierarchical sparse grid several properties have been proven in [2]. The
most interesting complexity is the number of necessary points N to achieve a
certain accuracy. A simple relationship exists for the hat function based grid
and integrands u with existing and continuous mixed derivatives

Slal
D%y = Y

- a1 [
oyt -0z

< 0. (3.7)

Measuring the interpolation error € in the infinity norm, the following relation
holds for the number of necessary grid points N:

N(e) = O(e 2 |logae| 24~ D). (3.8)

Or, the other way around, expressing the error resulting of N function evalua-
tions:

e(N) = O(N~?|logy N [>(4=1)), (3.9)

In case of the piecewise polynomial basis, better error bounds exist [2]. The
dimension only appears in the potency of a logarithmic term. Therefore the
sparse grid is considered to solve the problem of the “curse of dimension” to
some extent.

11

4 Basis functions

The multi-dimensional quadrature rule resulting from a Smolyak construction
depends on the choice of the one-dimensional rule. Various integration rules
differ in the position and weights of function evaluations. A static rule derives
these values from an a priori knowledge of the integrated function. The Gauss
rule determines positions and weights of a certain number of points to optimally
integrate a certain type of functions. A more flexible rule can decide position
and weights on the basis of function evaluations during the integration process.
The Gauss-Patterson rule can introduce new points interlacing all the old ones.
Local refinement is not possible. A third, most flexible hierarchical rule, based
on piecewise polynomials, allows the introduction of new points between two
existing points. The points can be focused on the interesting parts at the
expense of a less than optimal choice for smooth functions.

Sparse grids based on the Gauss and the Gauss-Patterson rule have been pre-
sented and proven to perform well on a wide variety of smooth functions [4].
However, there is little room for further tuning, due to the low flexibility of
the quadrature rule. A sparse grid algorithm based on a piecewise polynomial
basis can place function evaluation following local features of a function. The
basis functions introduced in [2] produce locally refined points that lie exactly
in the middle of two existing points. When a smooth function is integrated,
this leads to points lying equidistant over the whole domain, whereas Gauss
proved them to integrate best with positions concentrated on the sides of the
domain. Adapting the formulas found by Gauss to piecewise polynomials can
increase their performance on smooth functions considerably.

4.1 Gauss formulas

Gauss quadrature rules are usually constructed to exactly integrate polynomials
with the highest possible degree. Optimal positions can be computed for a
certain number of points or can be determined to extend a certain number of
existing points. The Gauss-Patterson rule exploits this kind of Gauss formula to
extend an n point rule by n+ 1 new points. A piecewise polynomial quadrature
rule must be able to insert new points individually with some control over their
position.

A polynomial basis consists of a number of basis polynomials. Integration with
piecewise basis polynomials is like using normal polynomials, when only a small
interval [a, b] is considered. Figure 4.1 shows the hierarchical polynomial pieces
which are involved in the approximation of an integrand on the interval [a, b].

12

4 Basis functions

L
-1

| J
b 0 1

Figure 4.1: Hierarchical basis functions involved in the interval [a,b]

The polynomial basis functions b(x), .., b, (z) with z1,...,z, being the corre-
sponding nodes should be constructed to integrate a polynomial p(z) of high-
est possible degree on the domain [a..b] exactly. A polynomial is integrated
exactly, if there are coefficients ci,..,c, depending only on evaluated points
p(z1), .., p(xy), such that:

/ab (é cibz'(x)> dz = /abp(x)d:v. (4.1)

The ¢; are the surpluses in a hierarchical basis and are ¢; = p(z;) in nodal basis.
The polynomial basis established in [2] allows exact integration of polynomials
with degree n—1 or smaller with n basis functions. Polynomials of degree n can
only be integrated with an additional basis function. As discussed previously,
a new function is constructed, by interpolating the old nodes and normalizing
it to one at the new node ;.

=L forxe€ [a..D]
b = n 4.2
=1
0 otherwise

If the basis functions by, .., b, integrate polynomials of degree n — 1 exactly, the
new basis functions by, .., b1 do the same for degree n, for any arbitrary value
ZTn+1, as long as it differs from all the previous values of z;. However, z,11 can
be chosen, such that polynomials of degree n + 1 can be integrated.

The position z, 41 of this new point can be obtained from a Gauss type formula
with preassigned abscissas [3]. The original formula can be used to add any
arbitrary number of new points. With only a number of one new point, the
formula can be written as:

Theorem: A set of basis function by, .., by4+1 can integrate polynomials of de-
gree n + 1 exactly, if:

13

4 Basis functions

(a) for all polynomials p(x) of degree < n:

/ab (712311 cibi(x)> dz = /abp(x)dx (4.3)

(b) .
/a (z —z1)...(z — zp)(x — Tpy1)dz =0 (4.4)

Solved by z,41 this leads to
b
z-(x—x1) - (x — zp)dz
Tn+1 — ¢ b (45)
/ (x —x1) -+ (z — zp)dz

Using this value in (4.2), the resulting basis functions can integrate polynomials
of higher degree. This new set of basis functions will be called piecewise Gauss
polynomials. This is a simple but yet powerful enhancement to the old piecewise
polynomials.

4.2 Piecewise Gauss polynomials

The full set of piecewise Gauss basis functions can be constructed as discussed
in section 2.2, but with the piecewise Gauss instead of centered nodes. Starting
with the constant function on [—1, 1], the successive son functions can be found
by splitting the interval at the function’s node (formula 4.5) and constructing a
new functions on the two intervals (formula 4.2). The resulting basis functions
are similar to the polynomial basis shown in section 2.2.2, but have their nodes
spread to the sides. Figure 4.2 compares the old and the new basis functions.

Figure 4.2: Basis functions constructed by the old rule (left) and piece-
wise Gauss rule (right).

14

4 Basis functions

Figure 4.3 shows a two dimensional sparse grid of level five. The piecewise
Gauss rule spreads the points to the sides without affecting the original sparse
grid structure.

n n + % + + % +
n ¥ 5 4 T v R T S
+ +
oo+t o+ oottt oz + + Tt
. i N N M . B e i S A RALS
+ + - +
B e A S o + } + +
r r + + +
T T ot o+ o+ o+t $ R
+ + + + +
r r + 1 + 1 + + 1
+ + + +
- A
+ + + i +
+ +
+ 4 + + + 4
+ + I
+ + + + +
j: j: 4+ o+ o+ o+ o+ + $ + o+
+ + + + +
FHE b e e b e . n $ + L4
+ + + + + + - -
T T R e e R At
SRR R R I P . N T
+ +
+ r + + i + 4+ + o+ o+ + o+ o+ + o+t
+ + + +

Figure 4.3: 2-dimensional grid generated by the old rule (left) and piece-
wise Gauss (right).

4.3 Polynomial degree of exactness

Piecewise Gauss polynomials of level [have degree [— 1 and integrate poly-
nomials of degree [exactly. If [is odd, polynomials of degree [+ 1 can also
be integrated. Due to the symmetry of the generated nodes, odd functions
are always correctly integrated to zero. On level [there are 2! — 1 points. A
classical non adaptive gauss scheme using this amount of nodes can integrate
polynomials of degree 2 - 2! — 3 exactly. This is the trade off that has to be
accepted for a function basis that allows adaptivity.

Figure 4.4 compares the degree of polynomials which can be integrated exactly
using different sets of basis functions. Piecewise polynomials in average increase
their degree by one per level. Determining the function’s node according to
the Gauss formula (4.5) increases the polynomial degree by one, compared to
nodes lying at any other position. With the Gauss rule, the polynomial degree
of exactness is about twice the number of points.

level 1 2 3 4 5 6
points 1 3 7 15 31 63
Polynomial | piecewise polynom.| 1 1 3 3 5 5
degree of . .
exactness piecewise Gauss 1 3 3 5 5 7

Gauss 1 5 13 29 61 125

Figure 4.4: polynomial exactness of different basis functions

Although the polynomial degree of exactness was the main design goal of these
new basis functions, it is not necessarily the most crucial point. Very smooth

15

4 Basis functions

functions or polynomials themselves profit most from a higher degree of exact-
ness. Functions with singularities or discontinuous functions do generally not
show any performance gains with different basis functions. Here the adaptive
strategy is the most decisive point. The piecewise Gauss polynomials are su-
perior to the old polynomials, as they can integrate higher order polynomials
without constraining the adaptive strategy.

4.4 Integration error

The piecewise Gaussian basis can integrate polynomials of degree n + 1 exactly
using only polynomials of degree n. It is important to further investigate how
functions can be integrated without interpolating them exactly. This will affect
the adaptive strategy, discussed in the next section.

When a function is integrated with polynomial basis functions, the integrand
is effectively interpolated by a polynomial, which is then integrated. In the
piecewise Gauss basis the interpolation points are the nodes ;. The quadrature
error can be computed according to this theorem [2]:

Theorem: If a polynomial p(z) of degree n interpolates a function f(z) at the
abscissas 21, .., Tn+1, then there is a ¢ for which the interpolation error is

1 n+1 s
lp(z) — f(=z)| = CES f(f)-g(wi—w)- (4.6)

When f(x) is a polynomial of degree n + 1, then D™ f(¢) is constant and does
therefore not depend on . Integrating the error on a domain [a..b] leads to

/ Ip(z) — f(2)|dz = —— . D"y /”"“ dz. (4.7)
(n+1)!

The integral of the product is equal to zero, according to formula (4.4). Hence
the error is zero:

/ lp(z) — f(z)|dz =0 (4.8)

Figure 4.5 shows three different basis functions generated by the piecewise
Gauss rule, on the levels one, two and three. When basis functions up to
these levels are used to interpolate a function, there occurs an interpolation
error. The right column shows this error up to a constant factor depending on
D"ly(€). The error is zero at the interpolation points and integrates to zero
on the whole domain. The Gaussian nodes are chosen such that the positive
and the negative error is balanced, i.e. the area above and below the x-axis is
the same. This is a crucial point and it will be shown that a straight forward
adaptive strategy destroys this property.

16

4 Basis functions

Basis function Interpolation Error
according to (4.6)

o
wWIN
—
o
WIND
—

wino
win

0 3 0 3
Figure 4.5: Basis functions and the error resulting from an interpola-
tion of polynomials with higher degree.

4.5 Non adaptive numerical example

So far, different univariate quadrature rules and the non adaptive sparse grid
construction have been introduced. In this section three quadrature rules are
compared in a non adaptive computation. The Gauss-Patterson rule and the
two hierarchical rules based on the old and the Gauss based piecewise polyno-
mials are used to integrate the following five dimensional integral:

1\° 1
(1 + 3) : /[0"1}5 I] =% da. (4.9)

The plot 4.6 shows the numerical results. The exact value of this integral is
1 and the error is plotted on the y-axis. The x-axis represents the number of
function evaluations. This example not representative, but gives an idea of the
importance of the polynomial degree of exactness, which is the main difference
between the quadrature rules. This relatively smooth integrand is still inte-
grated well with piecewise Gauss polynomials. For even more smooth functions
or polynomials themselves the difference between these curves would obviously
be much greater. They can be nearly the same for extremely non smooth or
discontinuous functions. A piecewise basis can often outweigh its disadvantage
by the implementation of adaptivity, which is not taken into account in this
plot. However, closer investigation in section 7.1 will show that the adaptive

17

4 Basis functions

algorithm introduced in the next section will not improve the performance con-
siderably beyond the non adaptive results. This leaves the piecewise Gauss rule
behind the Gauss-Patterson rule in this smooth example.

T T T
Piecewise polynomials —+—
0.1 Piecewise Gauss -->-- -
Gauss-Patterson ---%---
0.01 . —
§ 0.001 \\}K\\\ \X\\ -
le4 |- X -
\\%\ \\\\
le-5 s]
oy |
le-6 1 1 1
10 100 1000 10000

function calls
Figure 4.6: Nonadaptive numerical example

18

5 Adaptivity

Adaptive algorithms spend more effort on rough and less effort on smooth
regions. The two crucial tasks of adaptive strategies are the detection of a
function’s roughness and an appropriate grid refinement. There are formulas
which use a priori knowledge of the integrand’s smoothness [4]. If this kind
of information is not available the adaptive algorithm has to retrieve it during
the integration process. For sparse grids several strategies have been published
[2, 1]. After rough regions have been detected the grid has to be refined. Sparse
grids do not allow arbitrary points to be inserted. Gauss or Gauss-Patterson
based grids can only be refined along a whole direction at once. A hierarchi-
cal basis allows local subdivision of the function’s support according to a well
defined formula.

The adaptive scheme discussed in this section does not introduce radically new
concepts. However, it was necessary to adjust the known algorithm in order to
preserve the superiority of the new basis. The piecewise Gauss basis has been
constructed with a regular grid in mind. A different grid construction voids
the preliminaries of the gauss formula. A slightly modified construction process
will resolve this problem as explained in section 5.4.

5.1 Construction

Each node contributes to the total integration result by a certain amount. This
amount is determined by the hierarchical surplus and volume under the accord-
ing basis function. The surplus measures the function’s roughness, since it is
the difference between the integrand and a smooth polynomial interpolation.
Every node’s volume contribution indicates how promising a grid refinement is
at this point. A good adaptive algorithm based on this indication would be to
find the node with the greatest contribution and then locally refine the grid at
its position. After computing the surpluses of the new nodes the algorithm can
choose the next node. The big disadvantage is that for the surplus calculation
either all father nodes have to be revisited or huge amounts of extra informa-
tion have to be stored with every node. This leads to a high time or memory
complexity. It is not feasible to only refine the grid at only one point in each
step. It is possible to refine the grid at more positions and insert many new
points at once. Calculating all new surpluses can be done by one single tree
traversal with a complexity depending on the total number of nodes in the tree
and the number of dimensions.

An algorithm which combines several refinement steps can enqueue all the nodes
of an initial grid in a priority queue with their volume contributions as their key.
In each step the few largest nodes are then dequeued and the grid is refined at

19

5 Adaptivity

their position. The newly generated nodes are then enqueued after their surplus
is calculated. A good choice for the number of nodes taken from the queue was
found to be about 10% of the queue’s length in case of an up to 10-dimensional
problem, 5% and 3% for more than 10 or more than 100 dimensions. However
the numerical results don’t vary a lot with this value. The new nodes have
a smaller support and surpluses are usually smaller. They are therefore most
likely queued at the rear of the queue and the same nodes are taken out of
the queue no matter if less or a few more nodes are taken at once. Taking
too many can jeopardize optimal adaptivity. Dequeuing 100% at once leads to
a completely non-adaptive regular grid. Taking too few leads to unnecessary
increase of computation time.

The grid can be easily refined at a certain position in a way that is already
suggested by the tensor product basis. Each one-dimensional hierarchical basis
function has two sons. The support of the son functions is created by dividing
the father function’s support. In a multi-dimensional tensor product basis func-
tion the support is split along each dimension, such that 2d new basis functions
are created. Figure 5.1 shows a two-dimensional unrefined grid with one node
and the new nodes and supports after the refinement.

Figure 5.1: Nodes and supports of a refined grid

The algorithm has to stop when a desired accuracy is reached. A common
criterion is the difference between the volumes of the current and the previously
processed grid. This difference however depends on percentage of nodes being
dequeued before the next grid is generated. In order to produce comparable
data the sum of all volume contributions in the queue was used as an error
estimate. Once this sum falls below a fixed epsilon a further refinement of all
nodes is considered to change the integral by less than epsilon.

5.2 A good example

The superiority of an adaptive over a non-adaptive strategy depends on the
nature of the integrated function. Adaptive schemes are especially suited if the
function’s rough parts are concentrated on a confined area of the domain. The

20

5 Adaptivity

following three-dimensional integral is infinite on some of the domain’s borders.
Surpluses of points close to these borders will have surpluses tending to infinity
and will therefore contribute much more to the total volume than other points.

1 3

The integral was computed with the previously discussed adaptive scheme. The
domain of the unit cube [0..1]> was transformed to the cube [~1..1]%, such that
the piecewise Gauss basis functions can be used.

The numerical result shows how the adaptivity improves the convergence pro-
cess. The superiority of the adaptive grid grows with the number of points
that have been evaluated. The reason is that the potential of adaptivity can
only be developed after the function’s nature can be derived from a number of
evaluated points. The more points there are the better is the knowledge about
the functions behavior, resulting in a curve with increasing downward slope.
A third curve was plotted to demonstrate the theoretical power of this refine-
ment criterion. The volume contributions of all nodes were sorted according
to their absolute value. The greatest values were then added to calculate an
integral with a given amount of points. Obviously this convergence rate can not
be reached in practice, since it uses a priory knowledge about the integrand.
It rather shows the best possible results that can be achieved by searching for
the greatest volume contribution. The next section shows these best possible
results are not always that good.

1
dz (5.1)
T

1 : | .
regular grid ———
adaptive grid ------
sorted nodes -------
0.1 i
= 0.01 A \\\\ i
® ‘\ . \'“"l “ N
0-001 [\‘:,’ \"’ ,ll :,' \‘\I,II‘I :,_‘\ I“ . |
l | .
0 100 1000 10000

function calls
Figure 5.2: Adaptive quadrature of the “good example”

Figure 5.3 shows the points lying in the layer spanned by the z; and zo axis
and z3 = 0. The whole grid contains 922 points in all three dimensions and

21

5 Adaptivity

258 points in the two dimensional subspace. Since the function is symmetric
the grid is the same in the other directions. The points lie more densely close
to the two borders where the integrand is infinite.

H o+ + + + +
+

W+ + + + + + + + +
+

H o+ + + + +

+

W+ + o+ o+ o+
+
+ + + + +
+
o+ + + + + + +
+
+ + + + +
+
W+ + + + o+ + + +
+ + +
=+ o+ o+ o+ + + +
+ + +
B+ + + + + + + +
o+ + +
= ot R T E: % t

Figure 5.3: Adaptive grid

5.3 A bad example

An adaptive algorithm can obviously not considerably improve the integration
of a very smooth function, because the resulting grids are always close to reg-
ular ones. Since many functions are smooth in some regions or even in whole
directions it is absolutely essential that adaptivity does not lead to consider-
ably worse results than a regular grid. With the adaptive refinement scheme
established so far this can be the case, as the following example shows.

1 .
—_— id 5.2
(e—1) /[0..1}5 Zzl—ll o (5:2)

This is an exponential function integrated in five dimensions. The plot below
shows again three curves representing the regular grid, the adaptive grid and
the sum of the sorted nodes. The first remarkable thing is that adaptivity
worsens the results by up to four digits. The second thing is that on most parts
the sorted nodes performs even worse. This indicates some serious flaws in the
choice of new points. The nodes with the greatest volume contributions do not
always contribute most to the integrals accuracy.

In fact, there are only very few points responsible for this result. Only a small
amount of nodes being refined or few points being deleted in regular grid already
lead to this big decrease of accuracy. It is possible to determine these points
and reconstruct the grid in an appropriate manner.

22

5 Adaptivity

I .

1 " - regular grid ——
S Zx=rh adaptive grid ------

0.01 < T N sorted nodes -------

0.001
le-4 |-
le-5 |-
le-6 -
le-7 |-
le-8 |-
le-9 |-
le-10

error

10 100 1000 10000
function calls

Figure 5.4: Adaptive integration of the “bad example”

5.4 Balanced adaptivity

As explained in section 4.4 the piecewise Gauss basis functions reach a higher
polynomial degree of exactness by balancing the integration error on the func-
tion’s domain. A basis function of polynomial degree n can integrate polyno-
mials of degree n + 1 exactly, because the integration error on the left and on
the right side of the node sum up to zero. When both, the function left and
right son are created, the volume contributions of both nodes sum up to zero.
Creating only one son, however, leads to a new volume contribution, which is
not balanced by another volume of the same size, but opposite sign.

Without taking any special care this situation occurs with nearly every refine-
ment. Figure 5.5 shows how an unbalanced grid emerges after refining a five
node grid at one point. The missing neighbor is the other son of the nodes
father. It is the one that should balance the error.

O % O % unrefined grid

+ new nodes

* S S O missing neighbors

+ %+
+

Figure 5.5: Unbalanced grid

23

5 Adaptivity

With a lower polynomial degree of exactness smooth functions can generally
only be integrated less accurately. The following table demonstrates in three
steps, how unbalanced refinement destroys integration accuracy for the function

Vz+1.

/ With one point in the middle of the domain the
1 integration error on the left and the right side
add to 0.11.
0 | |
-1 0 1

A refinement on the left reduces the error on the
1r left side, while the right error lost its counter-
part. The total error increases to 0.20.

1

—

1
winN [~
o
—

A third point on the right corrects this situation.
1r The error on the left as well as the error on the
right are low. The total error is down to 0.016.

1

|
—t

1
win [~
o
wWIN —

There are basically two possible methods to preserve the higher polynomial
degree of exactness. One is to insert the missing neighbors and the other is not
to insert the unbalanced node. Obviously only the first one allows the creation
of new nodes. The second method is applied automatically, when fewer nodes
are necessary to achieve the same accuracy. The previously discussed adaptive
algorithm can therefore be enhanced by one new step, which balances all the
newly created nodes. Figure 5.6 shows the nodes and their hierarchial position
in an unbalanced and a balanced one-dimensional grid.

Figure 5.6: Balancing algorithm in one dimension

In multi-dimensional grids a node has to be balanced in every direction, and
these new neighbors have to be balanced again. With every new direction
the number of balancing nodes is doubled, unless the nodes lie in the center
of that direction. All nodes lie on the 29™ vertices of a hypercube with the
original node in one corner. The surplus of the nodes depend on their father

24

5 Adaptivity

nodes these, if not already existing and balanced, have to be balanced too. The
number of new nodes can increase by a factor of up to 2%™. This catastrophic
number of new nodes will hardly be reached in practice for two reasons. First
the balancing nodes are close to the original node and are therefore within a
region which was chosen for refinement. Even without balancing, they would
most likely be created anyway. Second, most of the nodes in a sparse grid have
positions with many of the coordinates equal to zero, and have no neighbors
in the corresponding directions. With n coordinates being different from zero
there will be at most 2" balancing nodes. This is the confining factor especially
in extremely high dimensional grids, where only low levels can be reached.
Although the number of additional points is usually low, there are occasions
where they do lead to unnecessary function evaluations. Optimally this balanc-
ing algorithm should only be applied in smooth regions. Section 5.7 describes
an algorithm which adaptively applies balanced adaptivity.

5.5 A two dimensional example

The balancing algorithm can be visualized, when it is used to refine a two di-
mensional grid. The polynomial order of exactness is reduced by unbalanced
refinement and is restored with the introduction of balancing points. The poly-
nomial p(z,y) has third degree in z and y. It can be integrated exactly by a
sparse grid of second level.

p(z,y) = 2%+ (y — 0.2)% + 22y (5.3)

A sparse grid of level two has a total of five points, which resulted from a
refinement of a single point grid. The table below shows the volume contribution
of each point in a domain ranging from -1 to 1 in each direction. The center
point for instance has a surplus of p(0,0)=0.04. The volume of this constant
basis function is 2 x 2 = 4 and the total volume contribution is 0.16. The sum
of all five points is the exact integral value of 212/75 ~ 2.84.

It is also worth noting that on this coarse grid volume contributions of neigh-
boring nodes do not have opposite sign. The function has a minimum near the
center. Therefore surpluses are positive in all directions. Balancing individual
points in this grid would not be necessary. This grid is already balanced due to
construction of the refinement.

0.27
0.67 0.16 0.67

1.07

The polynomial can be integrated exactly, but the basis functions are just strait
line pieces, which balance the integration error. That is why further refinement

25

5 Adaptivity

produces non-zero surpluses. The error estimate, the sum of the four points
on the second level, produces an error limit of 2.68. Refining the grid at the
largest node destroys this balance. The real error rises to 2 x 0.17 = 0.34, while
the estimated error goes down to 1.6.

0.27

0.67 0.16 0.67
—-0.01

+0.17 1.07 +0.17
+0.01

Once the new points are balanced in each direction the error is zero again. The
only reason why the balanced points add exactly to zero is that the integrand
is a polynomial with a degree one higher than the grid level. Other functions
would only reduce their error if they are approximated better by a polynomial
of higher degree.

-0.17 0.27 -0.17
0.67 0.16 0.67
-0.01
40.17 1.07 +0.17
+0.01

The sparse grid on third level shows how neighboring surpluses add to zero and
only the initial five points determine the integral value. The estimated error is
now down to zero. It would have been reasonable not to refine any of the initial
five points. There was however no way the decide this only on the basis of five
evaluated points.

+0.01
-0.17 0.27 -0.17
-0.01
+0.01 0.67 -0.01 0.16 -0.01 0.67 +0.01
-0.01
+0.17 1.07 +0.17
+0.01

26

5 Adaptivity

5.6 Numerical results

With a balanced grid it should now be possible to integrate a smooth function
with the same accuracy as a regular grid, without a considerable increase of
function evaluations. This property is verified using the two integrands seen
in section 5.2 and 5.3. First, it will be demonstrated how convergence can
be improved by the balanced adaptivity. The exponential function (5.2) from
section 5.3 will be integrated on a balanced grid:

1 5
T
(e 1)5 /[0"1]5 H eV dx.

i=1
The numerical results in figure 5.7 show that the balanced grid performs nearly
as good as the regular grid. The error is worse by one digit at most instead of
up to four digits. Since better performance than a regular grid could not be
expected anyway, this result is almost optimal.
Figure 5.8 compares the balanced and the unbalanced grid with about 10000
points. Only the points lying in the layer spanned by the z; and zs-axis are
plotted. The unbalanced grid has 10183 points and computes the integral with
an error of 6.3 x 1078, The balanced grid contains 10303 with an error of
2.7 x 1071%. Both grids are plotted over each other, marking the points with
a upright and a rotated cross respectively. Points which are present in both
grids appear as a star. Although the positions of the points differ only slightly,
the accuracy resulting from both grids differs by a factor more than 20. In the
plotted subspace the unbalanced grid has eight unbalanced points. Four are
balanced with additional points and four were not created, such that the total
number of points in the grid remains constant.

1 T | | . |
0.1 regular grid ——
' ~- unbalanced grid ------
0.01 F S N balanced grid ------- _

0.001 |-
le-4
le-5
le-6
le-7
le-8 |-
le-9
le-10

error

)
.
]]] 1

10 100 1000 10000
function calls

Figure 5.7: Balanced grid in the “bad example

27

&4

.« * :
* K % * * *

* %

* * * %

* %

BREXK K KK K K K XK K K K K

* *

* * * %

* *

X K X X X * L

* *

* * * %

* *

BOKEK K XK K X X XK K K X K

* *

* * * %

* *

¥ KX X X * x %

* *

x * * *

* *

X KX K XK K K X K K K X XK

X *

x * * *

X %

¥ KX X ¥ * x ¥

x * * £

Figure 5.8: Balanced vs.

Adaptivity

unbalanced
balanced

* X X

X X X X

*
*
*

KK K KKK

*

*

*
*
*

KK K HKKKK

X X X

*
*
*
*
*
*
DPEEKK K KK X XK X X XK X X K K XK X X X X X XX KKIRK
*
¥
*
%
X
¥

X X X X

unbalanced grid

The plot below shows how balancing increases the number of function evalua-
tions. Whereas the ratio of error and points does not differ considerably, the
number of points on a certain level is different. A cross marks the first creation
of a point on level 10. Since every point is balanced in a balanced grid, it takes
much more function calls to create points on a new layer.

1 | | -
regular grid
balanced grid ------
unbalanced grid -------
level 10 +
0.1 i
é ~N
o >
LN
0.01 | \\\\+\ i
0.001 &] | N M
10 100 1000 10000

function calls
Figure 5.9: Computational results for the balanced grid in the “good example”

28

5 Adaptivity

On level ten there are about twice as many points in the balanced than in
the unbalanced grid. The error in the balanced grid is only lower by one third.
Although the performance decrease is bearable in this example, it deserves some
further attention in order to assure optimal convergence for all functions.

5.7 Adaptive balance

Balanced adaptivity only improves convergence where the integrand is smooth.
Although the number of nodes evaluated in vain is generally not very high,
performance can be increased when the functions smoothness is observed and
balance only takes place in smooth regions and in smooth directions.

It can be verified, whether balanced nodes have improved accuracy on previous
levels. If a point z is dequeued, it can be checked whether the sons should be
balanced in direction ¢. Let y; be the neighbor of z in direction ¢, as shown in
figure 5.10.

o % o % unrefined grid

y + nodes to be created

¥ ok ok O missing neighbors
+

+ kx +
+

Figure 5.10: Unbalanced grid

The volume contributions of z and y; are v and w;. If y; has not yet been created
w; is set to zero. In direction ¢ a single node is considered to deteriorate the
result, if the error estimate for the unrefined point, |v + w;|, is better than the
estimated error, |v| and |w;|, of an unbalanced refinement.

|v + w;| < min{|v|, |w;|} (5.4)

Based on this result a new node is balanced in the appropriate directions.
A further criterion for balancing would be the total amount of new points.
Refinement could be reconsidered whenever balancing costs grow too high. This
would however complicate the whole refinement strategy.

The result of this algorithm can be demonstrated when the smooth exponential
function (5.2) is multiplied with the non-smooth root function (5.1).

1 AL N
A(e—19 /[0"1]10 \/—30_1 (g e) dz (5.5)

In the nine smooth directions balancing improves accuracy, whereas balancing
in direction of z; does not. The adaptive algorithm can detect this and only
balance in nine directions.

29

5 Adaptivity

The numerical results show that adaptive balance is superior to a fully balanced
as well as an unbalanced strategy. Balanced adaptivity can not always be
expected to produce the optimal convergence rates. For example the polynomial
in section 5.5 would not have been balanced automatically on level two. By
and large, the results will mostly lie close to the better of the balanced and the
unbalanced strategy.

T
unbalanced ------
-7 . _ balanced -------

_-~"adaptively balanced ——
- \

\ '\

0.1

0.01

error

0.001

le-4

le-5 . . .
10 100 1000 10000 100000
function calls

Figure 5.11: Results for the adaptively balanced grid

30

6 Efficient data structure

Adaptive sparse grids can be used to accurately integrate complex functions
with a minimum of function evaluations. However maintaining and process-
ing such a grid is quite costly compared to non adaptive schemes. Whereas
mathematical operations to calculate surpluses and volumes are rather simple,
accessing the data in the grid requires most of the computation time. To in-
crease the performance of sparse grid algorithms it is therefore most important
to find efficient data structures.

There have been various approaches to store sparse grids. A common data
structure is a binary tree. Simple trees have an access complexity of logn. In
order to increase efficiency additional information is needed to administrate the
structure. This increases memory consumption and maintainance complexity.
Another data structure for a sparse grid is a hash table. It allows complex
and fast access required by sparse grid algorithms. Suitable hash functions and
table implementations have been discussed [5]. The improvement addressed in
this section is a more economical way to store the unique key, which describes
the exact position in the grid.

6.1 Integer vector

A node in a multi-dimensional space can be represented by a vector containing
all the coordinates. An economical way to store each coordinate is to encode
the hierarchical position as an integer. The top node starts with number one.
The lefts son of a node x gets the number 2z and the right son 2z + 1. Figure
6.1 shows the hierarchical tree.

8 9 10 11 12 13 14 15

Figure 6.1: Hierarchical numbering scheme
Hierarchical position are often described with level 1 and index i. The corre-
sponding integer can then easily be calculated as 2= +4 — 1.

The top node, one, can be stored in one bit. In every new level the number
of bits required grows by one. It takes at most 1 bits to store a coordinate of

31

6 FEfficient data structure

level 1. Without complex packing strategies, 1 bits have to be allocated for each
coordinate. The total memory requirement of a d-dimensional integer vector
storing multi-dimensional coordinates up to level 1 is:

dl Bits (6.1)

Although accessing individual coordinates in this vector is very simple, memory
consumption makes it an unsuitable hash key. Its size easily outgrows the size of
the numerical data. With every hash table access the same amount of memory
has to be read in order to check whether the right entry was found. This
affects the execution speed, since main memory access is one of the most time
consuming operations on modern computer systems.

6.2 The bit string

In a sparse grid of level 1 the basis functions can have up to level 1 in each direc-
tion. It is not necessary to allocate the required memory for each coordinate,
because level 1 can not be reached in all dimensions at once. The sum of all
one dimensional levels is [+d — 1. Therefore a bit string can store a condensed
version of each coordinate.
Each coordinate is encoded in the following way. The top node is encoded by
an empty string. A node’s left son is encoded by appending the bits 10 to the
string. For the right son the bits 11 are appended. The coordinate strings are
then joined together with a separating zero between them.
A coordinate of level [; is stored in 2/; — 2 bits. Summing up all the coordinates
in a multidimensional position of a node of level 1 gives a total of 2] — 2 bits.
The coordinates are separated by d — 1 zero bits. The total storage requirement
is:

d+ 21— 3 Bits (6.2)

Figure 6.2 shows how coordinates are stored in the bit structure. The integer
representation of the coordinates is (2,6,1,4,7,...).

110/0/11210/0/0/1010/0/11]11]0...

. L] N .
\ . S ~ P
N . , N .
\ < iy <
\ M \ \ N N ,
\ SN \ \ SN SN .
AN \ \ AN AR /
. \ \ \ . \ . \ /
/ \ \ v \ / [

Figure 6.2: Bit string encoding a multidimensional position vector

There is another possible interpretation of the bit string. The bits representing
the coordinate can be created by interlacing the bits of integer discussed in
section 6.1 with one. Without the leading zeros, a hierarchical position is
represented by the bits 1b1bs - --b,. These bits are stored as 1b11by - - - 1b, in
the bit string. In other words a one marks the next bit to contain a bit of the
position and a zero separates the coordinates.

32

6 FEfficient data structure

In terms of required bits this structure is not optimal, but memory was not
the only design goal. Complicated bit arithmetic can outweigh the advantage
of reduced memory access. A compromise between time and space has to be
made.

6.3 Speed improvements

A typical task done by a sparse grid algorithm is a full or a partial grid traversal.
A full traversal is necessary to compute the surpluses and volume contributions
of all the nodes. Partial traversals are necessary when the grid is refined and
to check a nodes integrity, i.e. the presence of all the father nodes its surplus
depends on. In fact most hash table accesses are part of traversals in which
nodes are accessed in a well defined order. It is possible to improve this process
if the properties of the traversal algorithms are taken into account.

In a sparse grid traversal there is a variable maintaining the current position
in the grid. When the traversal proceeds, a new position is written into this
variable. This variable is then used to find the corresponding entry in the hash
table. The optimal structure to store the current position is an integer vector.
It has to be changed often and memory requirement is irrelevant, since it is only
stored once in the memory. The ideal structure to store the key in the hash
table is a bit string, because it does not need to be changed and is stored many
times. It would be possible to convert the integer vector into the bit string every
time the hash table is accessed. Since most of the time the coordinates of two
consecutive positions only differ slightly, better performance can be achieved,
when the converted bit string is maintained parallel to the integer vector.

The bit string can be accessed and updated quickly, if it is enhanced by two
additional components. One is an integer vector containing the integer repre-
sentation of each coordinate. The second new component is an offset pointer,
which points to all zeros representing a new dimension.

110/0[1210/0/0[1010/0]11]11]0...
bit gtring

12]7/8|13]18]..
offset pointer
2]6[1]4/7]..
coordinate vector

Figure 6.3: Improved bit string for faster access

A coordinate can be read directly from the position vector. Whenever a co-
ordinate is changed, the bit string has to be updated. If the old and the new
representation do not have the same length, the following bits have to shifted
to make enough space or fill the gap and the offset vector has to be updated.

Despite these new components main memory access stays low, since on modern
processors this enhanced bit string structure is small enough to reside in the

33

6 FEfficient data structure

processor cache, where all the costly updating operations occur. Figure 6.4
illustrates the memory access using the enhanced bit string.

processor cache | main memory

Fast bit string Hashtable
10/0[11100/010]100... !

| /H]J/B‘ H/J T : [101110010010011110...

\o,np\ [1001110001010011110...
2[7[8 1318 Wrigg: e,

‘ ~0101110000101011110...
2le[1]al7.. |
2l6lL 7] | [100111010110011100...

[1001111110010011110...

[(101011100010100000...

Figure 6.4: Efficient hash table access using bit strings

Hierarchical operations

When traversing the sparse grid data structure the most common operations
are finding a left or right son, finding the father and finding the neighbor, i.e.
the father’s other son.

For the neighbor operation only one bit has to be changed to convert the last
10 into 11 or vice versa. Using the offset vector the bit can be accessed directly
and the complexity is O(1).

For a son or father operation two bits have to be inserted or deleted. The
remaining bits have to be shifted. The total number of shifted bits is at most
d + 2l — 3. However a modern computer processor can shift up 64 bits at once,
which makes this extremely fast. The offset pointer is updated by adding or
subtracting two in up to d components. The total complexity is O(d + 2I).
Figure 6.5 shows how finding the right son in the second dimension affects the
data structure.

Y
10(0/1110| |0| 0/ 10/10/0|11 11 O..

2[7]8 13 187]...

9 10 15 20
28147 ...
13

Figure 6.5: Son operation using a fast bit string

34

7 Numerical Results

In the following the strengths and weaknesses of adaptive sparse grids are eval-
uated. Several integration problems have been collected by Morokoff, Caflisch
and Owen [6, 7]. These examples have been integrated with quasi-Monte
Carlo methods, using different quasi-random number generators. Gerstner and
Griebel [4] cited some of these integrals, where Gauss-Patterson quadrature
outperforms the quasi-Monte Carlo methods on these or, at least, on slightly
modified versions of the integrands. All their results were obtained without
adaptive strategies, except for one example, where the regular construction
was altered to focus on the important directions. Sparse grids based on the
Gauss-Patterson rule also performed better than all the other non-adaptive
rules investigated and is therefore the only one the piecewise Gauss rule is
compared with. The quasi-Monte Carlo methods were based on quasi-random
numbers generated after Faure, Sobol and Halton. The results of all the three
are given, if they deviate considerably, or if not stated otherwise. Monte Carlo
and quasi-Monte Carlo methods typically show convergence rates proportional
to ¢cN®. Whereas « is called the fitted convergence rate. It is obtained by a
least square fit of the average errors of several runs. In a log-log-plot these error
plots appear as straight lines with slope a. Only these regression lines are taken
from the original sources, since the error points vary with the random numbers
generated. Sparse grid algorithms often show convergence rates that increase
with time. The coefficient o then grows with the total number of investigated
function evaluations.

7.1 Test Function

The first test function has already been introduced with five dimensions in
section 4.5. This rather academic function is now integrated with an adaptive
strategy in different dimensions and compared with the quasi-Monte Carlo and
the Gauss-Patterson method, where data was available.

1\¢ 1
(10) foy MLt &

Since this integral is quite smooth, adaptivity does not increase accuracy. Figure
7.1 shows that in five dimensions the piecewise Gauss rule performs somewhere
between quasi-Monte Carlo and Gauss-Patterson. The regression line of quasi-
Monte Carlo the methods is plotted for more than 1000 points, where it is
backed by numerical data.

The same function can also be integrated with a higher number of dimensions.
Figure 7.2 shows the results of adaptive sparse grid quadrature in different

35

7 Numerical Results

dimensions and the quasi-Monte Carlo method which showed next to no per-
formance change with different numbers of dimensions. This plot demonstrates
the negative effects of dimensionality on the accuracy of sparse grids. Unfortu-
nately no higher dimensional data was published for the Gauss-Patterson based
grid. Since decreasing performance in higher dimensions is an inherent property
of sparse grids, Gauss-Patterson quadrature would eventually also fall behind
quasi-Monte Carlo.

1 T T T
adaptive piecewise Gauss —+—
0.1 regular piecewise Gauss -->-- —

Gauss-Patterson - I
guasi-Monte Carlo —-—-——--

0.01
0.001 |
le-4 |- AN TR T ~.

error

le-5
le-6 - ‘
le-7 | i
1e_8 | —

1e-9 | | |
10 100 1000 10000
function calls

Figure 7.1: Computational results for the test function in 5 dimensions

T
guasi-Monte Carlo (d=5,10,20,30)

d=30 --+--

0.1

0.01

0.001

error

le-4

le-5

le-6

le-7 ' ~
1000 10000 100000
function calls

Figure 7.2: Computational results for different dimensions

36

7 Numerical Results

7.2 Absorption Problem

The next example is simple transport problem described by the following inte-
gral equation [7]:

z)=zx+ /: yy(z)dz (7.2)

A particle travels through a one dimensional slab of length one. In each step
the particle travels a distance which is uniformly distributed on [0,1]. This may
cause it to exit the slab or, otherwise it is absorbed with probability 1 — «
A particle at position z eventually leaves the slab with probability y(x). The
exact solution of this problem is given by:

y(z) = % _ 1_77 o(1-2) (7.3)

The same problem can also be represented as an infinite dimensional integral.

/01 Z F(z,2) (7.4)

whereas F), is the probability for the particle to leave the slab after exactly n
steps and the vector z contains the leap lengths.

n+1
F,(z,z) =~"0 ((1-2x) sz) (Z zji—(1—z) (7.5)
with the Heaviside function 6(s) defined as:

1 fors>0
9(5)_{ 0 fors<0 (7.6)

This discontinuous integrand is a kind of worst case function for a sparse grid,
which was tuned for functions with bounded mixed derivatives. Discontinuities
that are parallel to the coordinate axes can be integrated without great prob-
lems. As Figure 7.3 shows, this integrand has a step running diagonal, which
leads to infinite mixed derivatives.

Since higher dimensions do not contribute considerably to the integral, they can
be truncated to a finite number. Computational results of y(0) with v = 0.5
in 20 dimensions are shown in figure 7.4. The results for the adaptive sparse
grid lie in the range of the standard Monte Carlo method, but can not compete
with quasi-Monte Carlo. The same computation with a regular grid did not
produce relative errors below 50% and would thus not even appear in this
picture. Although the results might look bad for adaptive sparse grids, at least
adaptivity rescues Monte Carlo-performance in a worst case.

Another interesting property is, that of the points in the adaptive grid 90 per-
cent had surpluses equal to zero. Since the integrand is constant, once the
particle left the slab, this is no big surprise. Quasi-Monte Carlo methods are
not affected by additional constant directions, since it means effectively inte-
grating the non-constant part with quasi-random vectors projected into the

37

7 Numerical Results

non-constant subspace. In this example it turns out to be a great disadvantage,
that a grid refinement generates points, which differ in only one coordinate
from the existing points and have no volume contribution if the corresponding
direction is constant.

Figure 7.3: The integrand > o2, F},(0, z) in the first two dimensions

2 Monte Carlo ------- i
guasi-Monte Carlo (Faure, Sobol, Halton) ------
piecewise Gauss —+—
-4 -
S 6 i
(¢}
© -
> -8 TREel _
ke L S
-10 T ‘\\\\\\ .
-12 e -
| 1 1 | 7
10 11 12 13 14 15

log2 N
Figure 7.4: Results for the discontinuous integrand in 20 dimensions

38

7 Numerical Results

Much better results can be obtained by describing the same problem with a
smooth formulation. F,(z,z) in formula (7.4) can be replaced by F;(z,z)
describing the contribution of each jump.

n—1 n
F(z,z) =4"(1—-x)" <H zznz> (1 - (1-1x) H zz> (7.7)
i=1

i=1

With this smooth integrand the sparse grid properties can be fully exploited.
Computational results for 20 dimensions are shown in figure 7.5. While the
quasi-Monte Carlo Methods gain about two digits of accuracy, the sparse grid
gains eight. With 30000 evaluated points the adaptive sparse grid outperforms
quasi-Monte Carlo by about four digits.

| T T I
Monte Carlo -------
S guasi-Monte Carlo (Faure, Sobol, Halton) ------ -
---------------- piecewise Gauss —+—
0 T T]
I L
S st T S o
S T —-———
o
g
= -20 |
-25 |
-30 L L I |
10 11 12 13 14 15

log2 N

Figure 7.5: Results for the smooth integrand in 20 dimensions

Although this integrand is perfectly smooth, adaptivity is still needed, since
higher dimensions still contribute only little to the total result. Unfortunately
no Gauss-Patterson results were published for one of the twenty dimensional
problems. It was however possible to further reduce the number of dimensions
until the dimension independent quasi-Monte Carlo method could be outper-
formed. Figure 7.6 shows Gauss-Patterson beats the best of the quasi-Monte
Carlo methods in eight dimensions but not the adaptive grid. The quadrature
stops with an error of 1072, since this is the error, done by truncating the
infinite dimensional integral to eight instead of twenty dimensions.

39

0.001

le-4

le-5

error

le-6

le-7

le-8

7 Numerical Results

I T
guasi-Monte Carlo ------- -
o ~.__ Gauss-Patterson -->--
*-piecewise Gauss —+—

10

100 1000 10000
function calls

Figure 7.6: Results for the smooth integrand in 8 dimensions

7.3 CMO Problem

A typical collateralized mortgage obligation problem has been described in [6].
The present value of a security is the expectation value over the random vari-
ables involved in the interest rate fluctuations with each dimension representing

one month.

PV = E(v)

d
= B wm) (7.8)
k=1

The variables of this problem are:

Uk
My
ik
Wk
Tk
Ck
C

&k

discount factor for month k

cash flow for month k

interest rate for month k

fraction of remaining mortgages prepaying in month k
fraction of remaining mortgages of month k
(remaining annuity at month k)/c

monthly payment

an N'(0,0?) random variable

40

7 Numerical Results

Several of these variables can be computed as follows:

k-1
we = [[A+i)™"
=0
my = crg((1 — wg) + wgey)
k—1
e = [—w)
j=1
d—k)
o = Y (1+ig)™ (7.9)

§=0

The interest and prepayment rate can be computed from the random variable
&, and the initial interest rate 9. The constant Ky = e~%°/2 normalizes the log-
normal distribution, such that E(ix) = i9. K1, Ko, K3 and K, are parameters
of the system.

ik = KQ efk ik:—l
= K(/)C Stk io
w = Ki+ Koarctan(Ksi, + K4) (7.10)

With the density of the normal distribution

1 _€
9(€) = e 2 (7.11)

the expectation value can be written as an integral over R?. Using the inverse
distribution function G(z) defined as G~1(z) = [g(£)d¢, the integral can

then be transformed into an unweighted integral over the unit cube.
PV = [0l 160) 9060+ gl€a)der - da

- / o(G(m1), -, Clwg)) dar -+~ dg (7.12)
0,1

Brownian Bridge A more efficient way to compute this integral was suggested
in [6]. They reduced the effective number of dimensions by representing the
interest rate fluctuations as a Brownian motion b(t). The future value b(t+ At;)
can be generated by a random jump from a past value:

b(t() + Atl) = b(t) + VAt €t0+At1- (713)

Using the Brownian bridge formula, b(¢ + At;) can also be computed from a
future and a past value:

b(to + Atl) = (1 — a,)b(t()) + ab(t + Aty + AtQ) +c §t0—|—At1 (7.14)
in which
Aty
a =
Aty + Aty

¢ = Valt,. (7.15)

41

7 Numerical Results

Starting with 5(0) = 0 and b(d) = V/d &g, the subsequent values can be found
as the successive mid-points b(d/2), b(d/4), b(3d/4), b(d/8), b(3d/8) and so on.
Most of the functions variation is put into the dimensions defining the first few
values of b. This increases the potential of adapativity and the performance
of quasi-Monte Carlo quadrature. The interest rate fluctuations can now be
computed from the Brownian bridge formula.

i = K& ¥ 4 (7.16)

Numerical example in 256 dimensions In the first example, the piecewise
Gauss and the Gauss-Patterson rule are compared. The parameters of the
system are defined as follows:

(io, ¢, K1, Ko, K3, K1, 02) := (0.007, 1.0,0.01, —0.005, 10, 0.5, 0.0004)

Figure 7.7 shows, how Brownian bridges (BB) improve the power of adaptive
schemes. In order to make this advantage accessible to Gauss-Patterson quadra-
ture, the standard sparse grid construction was modified, such that a higher
level formula was used in the 30 most important directions. These directions
were found by a previous run up to a level of two. The piecewise Gauss rule
finds these important directions itself, but shows a disadvantage where no use
of adaptivity can be made, i.e. at the very beginning and at the non-Brownian
bridge construction. Although the piecewise Gauss grid performs best for more
than 108 points, there is no doubt that more sophisticated adaptivity applied
to the Gauss-Patterson grid would lead to even better results.

0.01 T T L T T
adaptive piecewise Gauss —+—
adaptive piecewise Gauss (BB) -->--
Gauss-Patterson ---%---
0.001 Gauss-Patterson (BB) - |
S lea -
(<)
le-5 |- -
le-6 | | | | Lo
10 100 1000 10000 100000 1le+06 1e+07

function calls
Figure 7.7: CMO-Problem in 256 dimensions

42

7 Numerical Results

Numerical example in 360 dimensions Results for the Sobol’ quasi-Monte
Carlo method have been published for a 360 dimensional version of this exam-
ple. The problem was found to be nearly anti-symmetric. Antithetic sampling
can improve the performance of the quasi-Monte Carlo method, by integrating
the function (f(z) + f(—=z))/2. Since anti-symmetric functions produce sym-
metric adaptive grids, this property is automatically exploited by the sparse
grid, except for the fact that the same results could be achieved by storing only
half the number of grid points.

Figure 7.9 shows, that the adaptive sparse grid can not compete with the stan-
dard quasi-Monte Carlo method within the investigated sample size. An in-
creasing downward slope can be expected with even more function evaluations.
Because of the rather large algorithmic overhead and the exploding memory
consumption, sparse grid are probably not applicable in these high dimensions.

Monte Carlo ------
guasi-Monte Carlo -------
0.01 guasi-Monte Carlo (anti) - -
adaptive piecewise Gauss —+—
0.001 .
2 le4 .
[¢)]
le-5 -
le-6 | -
le-7 ' : '
100 1000 10000 100000

function calls
Figure 7.8: CMO-Problem in 360 dimensions (BB)

7.4 Asian option

This final example computes the exercise price of path-dependent options,
known as Asian options. These options have values depending on the aver-
age of the underlying asset price at certain sampling times ¢1,..,t; and can be
computed as the expectation value of v.

1 & !
v = u- l(—l)s (E Z ay — c)] (7.17)
k=1
with

+ J o forz>0
[=]" = { 0 otherwise (7.18)

43

7 Numerical Results

The variables of this problem are:

ty = sampling times
ar = asset price at time %
¢ = strike price
= call or put
= discount factor
o = volatility
& = agp =N(0, 0%(ty — ty_1)) random variable
pr = drift for time t.

Following the notation of the previous example Ky = e~2"/2 normalizes the

log-normal distribution and aj’s can be computed as jumps from past to future
values

ap = Kék 6§1+."+€k+uk ap (719)

or with the Brownian bridge formula, which was used to obtain the numerical
results in this section:

ar = K@ ORI (7.20)

The expectation value can be written as an integral over R¢. Using the inverse
distribution function Gy (z) defined as G, '(z) = [*_ gx(€)dé, the integral can
then be transformed into an unweighted integral over the unit cube.

E(v) = /Rdv(&,“',fd)gl(fl)"'gd(fd)dfl'“dfd

= / ’U(Gl(.’El),--- ,Gd(wd)) d:vl d.%‘d (7.21)
[0,1]4

The following two real world examples describe a call option with a different
volatility and a different strike price. The integrand evaluates the average
asset price and evaluates to zero where the average falls below the strike price.
The unweighted integrand tends to infinity, since an unbounded asset price
development can always increase the option’s return. The common variables
were set to:

d = 13
ap = 125.83
u = 0.8

s =0

(to,.-,dq) = (0,3.89863,3.91781,3.93699, 3.95616, 3.97534, 3.99452
4.0137,4.03288,4.05205,4.07123,4.09041,4.10959, 4.12877)

(1,5 pa) = (0.164786,0.16581,0.166836,0.167864,0.168894,0.169927,
0.170941,0.171904, 0.172869, 0.173835, 0.174803,0.175772,0.176743).

44

7 Numerical Results

Example 1: In this first example the strike price is well below the spot price,
thus making the exercise of this option rather likely. The exercising probability
of ~ 75% leads to a support of the unweighted integrand on 75% of the unit
cubes area. The smooth part of the function dominates in this examples and
only a relatively small part is cut away by the [-]T function.

Figure 7.9 shows the numerical results for the values ¢ = 0.225 and ¢ = 100.
The adaptive grid outperforms the Monte Carlo method and the accuracy of
about 0.1%, which is typically desired in practice, can be achieved with only
1000 function evaluations.

1= T T T T
S~ Monte Carlo ------
Y adaptive grid ———
0.1 [
2 0.01 |
()]
0.001 |-
0.0001
1 10 100 1000 10000 100000

function calls

Figure 7.9: Asian option with exercise probability 75%

Example 2: In this example the values were set to o = 0.09 and ¢ = 233.
A high strike price and a low volatility make this option rather unlikely to
be exercised. The function’s support covers 0.5% of the area and is squeezed
tightly to the domain’s border. By default the sparse grid would run in all
directions and only find points which evaluate to zero. With the Brownian
Bridge there is one most important direction which can be used to find at
least one point of the support. It can be found on level 6 with the coordinates
(0,---,0,0.996969). With only a total of 6 evaluated points the grid determines
the integral already up to 10% accurately. Figure 7.10 shows that further
refinement of this start grid does not considerably improve accuracy. Despite big
head start the integral’s approximation oscillates heavily and does not converge.

45

7 Numerical Results

1 T T T T
Y Monte Carlo ------
Y adaptive grid ———
0.1
S
)
0.01
0.001 . : ' :
10 100 1000 10000 100000 le+06

function calls
Figure 7.10: Asian option with exercise probability 0.5%

7.5 Run times and complexities

Although evaluating the function is the most time consuming factor in many
application fields, for practical considerations it is useful to have an idea of
run times and complexities of the investigated examples. The sparse grid algo-
rithm consists of two main parts. First, evaluating the function at the desired
points and second, computing the surpluses. All the example integrands had
evaluation complexities O(d) and contribution to the total run time was rather
small. The most time consuming task was computing the surpluses. Comput-
ing a node’s hierarchical surplus using basis functions of polynomial degree p
was theoretically proven to have complexity O(p?d) [2]. The deepest compu-
tation in this publication reached a level of 17 in section 5.2 with a maximum
polynomial degree of 16. Computational results showed that the time spent on
functions involved in polynomial operations still had only minor influence. For
all practical considerations the time complexity can be assumed to be O(d).
The adaptive algorithm has to recompute all surpluses every time new nodes
are added to the grid. The new nodes typically outnumber the existing nodes
by a large factor such that recomputation costs can be ignored. The total time
complexity for creating a d-dimensional grid with N points is O(dN). This is
the same complexity as for the Monte Carlo method where d random numbers
have to be created for every node. This suggests a constant asymptotic ratio of
time needed by Monte Carlo and the sparse grid to handle a certain amount of
nodes. Since Monte Carlo only depends on Processor speed while sparse grids
heavily depend on main memory access, this ratio depends on the employed
hardware. On a Sun SPARC with 300 MHz, the CMO-Problem (section 7.3)

46

7 Numerical Results

was used to compare the run times for generating a certain amount of nodes
with the current sparse grid implementation and a simple Monte Carlo method.

grid dim | level | nodes | sparse grid | Monte Carlo | ratio
regular 10 7 | 397825 84s 17s 4.9
adaptive | 10 15 | 543062 106s 25s 4.2
K 50 9| 87025 64s 19s 3.4

K 100 7| 48049 65s 20s 3.3

K 200 6 | 48705 235s 43s 5.5

In terms of generated points per time the Monte Carlo Method outperforms the
sparse grid by a factor ranging from 3.3 to 5.5. The 10-dimensional example is
computed with a regular and an adaptive grid. Despite a minor performance
difference there are no serious slow downs resulting from a higher polynomial
degree. Total integration speed ups for the published examples can be expected
for the smooth integrands, where performance gains where already encountered
in terms of function evaluations, i.e. the smooth absorption problem or the first
example of the Asian option.

47

8 Conclusion

In this publication a powerful adaptive sparse grid algorithm based on piece-
wise polynomials has been outlined. Its performance has been demonstrated in
various examples and was compared to quasi-Monte Carlo and a non-adaptive
version of a Gauss-Patterson based sparse grid. The final results can be sum-
marized in these propositions:

Sparse grids require smooth integrands. In the discontinuous example
the quasi-Monte Carlo method greatly outperformed the sparse grid. Although
adaptivity avoided the fiasco experienced with a regular grid, the adaptive strat-
egy could not place the points more efficiently than quasi-random sequences.

Higher polynomial degree of exactness increases performance. The
Gauss-Patterson rule has a polynomial exactness of O(2!) on level I, compared
to O(l) in the piecewise case. The Gauss-Patterson rule can therefore produce
more accurate results on one level [and its accuracy accelerates quicker with
increasing levels. On the other hand, piecewise basis functions can reach higher
levels with much fewer points, whenever adaptivity can be applied.

Adaptivity is an essential ingredient to sparse grids. Despite claims
that non-adaptive sparse grids can “outperform Quasi-Monte Carlo methods
by about a factor of 2 in the fitted convergence rate «”[4], this turned out to
hold only for a very limited set of carefully chosen examples. Many practical
examples do have nearly constant directions and can not be represented with
the same accuracy in fewer dimensions, as section 7.2 shows. This does not
despise Gauss-Patterson quadrature in general, since it would theoretically be
possible to implement efficient directed adaptivity. The point-wise adaptivity
of piecewise Gauss quadrature might be overkill in many application fields.

Sparse grids decrease performance with dimensions and increase per-
formance with time. Sparse grids are much more sensitive to dimensionality
than quasi-Monte Carlo methods, especially when the integrand is nearly con-
stant in additional directions. On the other hand, convergence rates grow with
the number of function evaluations. This can mainly be accounted to the grow-
ing polynomial degree of exactness and the growing adaptive efficiency. By and
large sparse grids are applicable in low to moderate dimensional problems with
moderate to high accuracy requirements.

Acknowledgement: I would like to thank Hans-Joachim Bungartz for super-
vising this project.

48

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]
8]

Thomas Bonk. FEin rekursiver Algorithmus zur adaptiven numerischen
Quadratur mehrdimensionaler Funktionen. Fakultit fir Informatik, Tech-
nische Universitat Munchen, 1994.

Hans-Joachim Bungartz. Finite Elements of Higher Order. Shaker Verlag,
1998.

Philip J. Davis and Philip Rabinowitz. Numerical Integration. Blaisdell
Publishing Company, 1967.

Thomas Gerstner and Michael Griebel. Numerical Integration using Sparse
Grids. Institut fur Angewandte Mathematik, Universitat Bonn, 1997.

M. Griebel. Adaptive sparse grid multilevel methods for elliptic PDEs based
on finite differences. Institut fur Angewandte Mathematik, Universitét
Bonn, 1997.

Art Owen Russel E.Caflisch, William Morokoff. Valuation of mortgage
backed securities using brownian bridges to reduce effective dimension, 1997.

William Morokoff Russel E.Caflisch. Quasi-monte carlo integration, 1995.

S.A. Smolyak. Quadrature and interopaltion formulas for tensor products of
certain classes of functions, pages 240-243. Dokl.Akad.Nauk SSSR 4, 1963.

49

